Hyperbolic - Parabolic Chemotaxis System with Nonlinear Product Terms
نویسنده
چکیده
Abstract We prove the local existence and uniqueness of week solution of the hyperbolic-parabolic Chemotaxis system with some nonlinear product terms. For one dimensional case, we prove also the global existence and uniqueness of the solution for the problem.
منابع مشابه
Nonlinear Stability of Large Amplitude Viscous Shock Waves of a Generalized Hyperbolic{parabolic System Arising in Chemotaxis
Traveling wave (band) behavior driven by chemotaxis was observed experimentally by Adler and was modeled by Keller and Segel. For a quasilinear hyperbolic parabolic system that arises as a non-di®usive limit of the Keller Segel model with nonlinear kinetics, we establish the existence and nonlinear stability of traveling wave solutions with large amplitudes. The numerical simulations are perfor...
متن کاملGlobal Solutions for a Hyperbolic-parabolic System of Chemotaxis
We study a hyperbolic-parabolic model of chemotaxis in dimensions one and two. In particular, we prove the global existence of classical solutions in certain dissipation regimes.
متن کاملGlobal Existence of Solutions to a Hyperbolic-parabolic System
In this paper, we investigate the global existence of solutions to a hyperbolic-parabolic model of chemotaxis arising in the theory of reinforced random walks. To get L2-estimates of solutions, we construct a nonnegative convex entropy of the corresponding hyperbolic system. The higher energy estimates are obtained by the energy method and a priori assumptions.
متن کاملKinetic and hydrodynamic models of chemotactic aggregation
We derive general kinetic and hydrodynamic models of chemotactic aggregation that describe certain features of the morphogenesis of biological colonies (like bacteria, amoebae, endothelial cells or social insects). Starting from a stochastic model defined in terms of N coupled Langevin equations, we derive a nonlinear mean field Fokker-Planck equation governing the evolution of the distribution...
متن کاملStability Results for a Diffusion Equation with Functional Drift Approximating a Chemotaxis Model1
A hyperbolic-parabolic "chemotaxis" system modelling aggregation of motile cells by production of a diffusible chemoattractant, is approximated by a scalar diffusion equation for the cell density, where the drift term is an explicit functional of the current density profile. We prove the unique existence and, using the Hopf-Cole transformation, the local stability of an equilibrium, i.e. a stea...
متن کامل